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Computational Methods

This presentation covers the following computational techniques for quantum mechanical
problems:

Matrix Representations: Construction of quantum operators using ladder operators and
tensor products.

Eigenvalue/Eigenvector Calculations: Numerical diagonalization for energy spectra
and eigenstates.

Time Evolution Simulations: Solving the time-dependent Schrödinger equation using
matrix exponentiation.

Open Quantum Systems: Modeling particle loss and decoherence using Lindblad
master equations.

Many-Particle Systems: Analysis of Bose-Hubbard models for interacting bosons.
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Introduction

Quantum mechanics can be numerically simulated using matrix representations of Hilbert
space operators.

This project explores various quantum systems, including one-dimensional potentials,
angular momentum operators, and many-particle systems.

Numerical methods include finite difference techniques, spectral analysis, and time
evolution simulations.

The implementation is done in Python using libraries like NumPy, SciPy, and Matplotlib,
translating concepts from MATLAB-based quantum computations.

Visualization of quantum dynamics and energy spectra provides insights into physical
phenomena.
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Paper Reference

Figure: Key results from the referenced paper.
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Python Code Example

1 Parameters N = 1000 xmin, xmax = -10, 10 dx = (xmax - xmin) / N x =

np.linspace(xmin, xmax, N)

2 Potential (harmonic oscillator) V = 0.5 * x**2

3 Kinetic energy matrix (using finite difference) diagonals = [np.ones(N-1),

-2*np.ones(N), np.ones(N-1)] offsets = [-1, 0, 1] T = sp.diags(diagonals, offsets)

* (-0.5/(dx**2))

4 Hamiltonian H = T + sp.diags(V, 0)

5 Solve eigenvalue problem eigenvalues, eigenvectors = spla.eigsh(H, k=6,

which=’SM’)

Shaukat Aziz (IISc) Computations in Quantum Mechanics Python Implementation April 23, 2025 5 / 20



MATLAB Code Example

1 ; xmin = -10; xmax = 10; dx = (xmax-xmin)/N; x = linspace(xmin, xmax, N);

2 V = 0.5 * x.2;
3 e = ones(N,1); T = spdiags([e -2*e e], -1:1, N, N) * (-0.5/(dx2));
4 H = T + spdiags(V(:), 0, N, N);

5 [psi, E] = eigs(H, 6, ’sm’); E = diag(E);
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Advantages of Each Implementation

MATLAB Advantages

Intuitive matrix syntax

Integrated visualization

Strong documentation

Built-in eigenvalue solvers

Academic community support

Python Advantages

Open-source and free

Better scalability

Integrates with ML frameworks

Growing quantum packages

Modern development practices
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Methodology

Matrix Representation of Operators:
Ladder operators a and a† are used to build position and momentum operators:

x̂ =

√
1

2
(a† + a), p̂ = i

√
1

2
(a† − a)

Eigenvalue Computation:
Spectral analysis via numpy.linalg.eig() or scipy.linalg.eigh().

Time Evolution:
Time-dependent wavefunction evolution using matrix exponentiation e−iHt .

Many-Particle Systems:
Modeled using the Bose-Hubbard Hamiltonian with tensor products of creation/annihilation
operators.

Open Quantum Systems:
Lindblad master equation models particle loss due to environment interaction.
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Analytical vs Computational Comparison

System Analytical Approach Computational Approach

1D Quantum

System

- Exact solutions for simple potentials (e.g., harmonic oscillator). - Matrix representation of x̂ , p̂, and Ĥ.

- Diagonalize to get eigenvalues and wavefunctions.

Bloch Oscilla-

tion

- Bloch theorem predicts periodic motion.

- Energy spectrum: En = ε + dFn.

- Time evolution using tight-binding Hamiltonian.

- Simulate wave packet dynamics with Û = e−i Ĥ∆t .

Angular

Momentum

- Commutation relations & ladder operators used to derive energy

levels.

- Construct Ĵx , Ĵy , Ĵz matrices numerically.

- Apply to spin systems and rigid bodies.

Asymmetric

Top

- No general closed-form solution for energy levels.

- Only special cases (symmetric tops).

- Full numerical diagonalization of the asymmetric rotor Hamiltonian.

- Histogram reveals classical-like features.

Many-Particle

System

- Analytical treatment possible only for few particles or simplified

limits.

- Use tensor products to build many-body operators.

- Diagonalize Bose-Hubbard Hamiltonian for energy spectrum.

Open Quantum

System

- Master equations (Lindblad form) can be written but are rarely

solvable.

- Use density matrix formalism and time integration (e.g., predictor-

corrector) to simulate dissipation and dynamics.

Table: Comparison of Analytical and Computational Approaches
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One-Dimensional Quantum Systems – Theory

Hamiltonian Form:

Ĥ =
p̂2

2m
+ V (x̂)

Describes a single particle in a
one-dimensional potential.

Matrix Representation: Position x̂ and
momentum p̂ operators are constructed
using ladder operators a, a†:

x̂ =
1√
2
(a† + a), p̂ =

i√
2
(a† − a) Visualization of potential V (x)
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Bound State and Time Evolution

Bound State Calculation:
Potential example: Double well

V (x) =
1

2
(|x | − x0)

2

Numerical diagonalization yields energy
eigenvalues and eigenstates.

Time Evolution:
Time evolution via operator:

Û = e−i Ĥ∆t

Expectation value ⟨x̂⟩ tracked over time
to observe quantum dynamics.

Wave packet dynamics visualization
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Bloch Oscillations – Theory

System Setup:
Particle in a periodic potential subjected to a constant external force F .
Total potential:

V (x) = V0(x) + Fx

Tight-Binding Approximation:
Hamiltonian expressed in Wannier basis |n⟩ as:

Ĥ =
∑
n

(ϵ+ dFn) |n⟩ ⟨n| − ∆

4
(|n + 1⟩ ⟨n|+ |n⟩ ⟨n + 1|)

d : lattice spacing, ∆: bandwidth, ϵ: on-site energy.

Bloch Oscillations:
Despite applied force, the particle doesn’t accelerate indefinitely.
Instead, it undergoes periodic motion with Bloch period:

TB =
2πℏ
dF
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Wave Packet Dynamics and Directed Transport

Wave Packet Dynamics:
Narrow initial wave packet → Breathing
mode.
Broad initial packet (Gaussian) →
Oscillatory motion across lattice sites.

Directed Transport via Field Flipping:

Alternating the force direction every half
Bloch period cancels backward motion.
Results in net transport across lattice.
Velocity of transport is independent of
F :

v =
∆d

πℏ
Visualization:

Simulation shows wave packet spreading
and oscillating.
Color maps plot |ψn(t)| over time and
site index.

Wave packet dynamics visualization

Shaukat Aziz (IISc) Computations in Quantum Mechanics Python Implementation April 23, 2025 13 / 20



Angular Momentum Operators – Theory

Angular Momentum Basis:
Quantum states labeled as |j ,m⟩ with:

j : total angular momentum (integer or half-integer),
m: magnetic quantum number (from −j to +j).

Ladder Operators:
Defined as:

Ĵ+|j ,m⟩ =
√

j(j + 1)−m(m + 1)|j ,m + 1⟩

Ĵ− = Ĵ†+

Cartesian Components:

Ĵx =
1

2
(Ĵ− + Ĵ+), Ĵy =

i

2
(Ĵ− − Ĵ+), Ĵz =

1

2
[Ĵ+, Ĵ−]
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Rigid Body Hamiltonian

Hamiltonian:

Ĥ =
Ĵ2x
2Ix

+
Ĵ2y
2Iy

+
Ĵ2z
2Iz

Models asymmetric top with different moments of inertia.
For symmetric tops (e.g., Ix = Iy ), analytical solutions exist.

Quantum-Classical Connection:
For large j , energy levels approximate classical behavior on a sphere:

Energy surface has minima, maxima, and saddle points.

Energy histogram (for large j) shows peak near saddle point due to infinite classical orbit
period.

Density of States Insight:
Eigenvalue density peaks at classical saddle energy.
Demonstrates correspondence principle — quantum mirrors classical phase space structure.
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Asymmetric Top: Histogram of Energy Eigenvalues

The plot shows the distribution of energy levels for a
quantum asymmetric top with angular momentum j = 1000.

The x-axis is normalized energy E/j2, and the y-axis shows
the number of states per energy bin ∆N/∆E .

The system models a rigid rotating body (e.g., a molecule)
with three unequal moments of inertia: Ix ̸= Iy ̸= Iz .

The energy levels are obtained by diagonalizing the
Hamiltonian:

Ĥ =
Ĵ2x
2Ix

+
Ĵ2y
2Iy

+
Ĵ2z
2Iz

The sharp peak at E/j2 = 1 corresponds to the classical
saddle point energy, where classical orbits are unstable,
causing quantum states to cluster.

Histogram of energy
eigenvalues for an asymmetric

top
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Many-Particle System – Bose-Hubbard Dimer (1/2)

System Description:
Two-site system for interacting bosons, also known
as a Bose-Hubbard dimer.
Hamiltonian:

Ĥ = ϵ(n̂1 − n̂2) + v(â1†â2 + â2†â1) + c(n̂1 − n̂2)2

Operators:

âi , âi†: annihilation/creation operators at site i ,
n̂i = âi†âi : particle number operator.

Key Parameters:
ϵ: site energy difference,
v : hopping strength,
c: interaction strength.

Visualization of Bose-Hubbard dimer
dynamics
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Many-Particle System – Bose-Hubbard Dimer (2/2)

Numerical Setup:
System modeled in a truncated Fock basis with total particle number N.
Full Hamiltonian built using tensor products of single-site operators.

Graph Description:
x-axis: Expected total particle number ⟨N⟩,
y-axis: Corresponding energy eigenvalues En.
Shows distribution of converged energy levels as a function of particle number.

Physical Insight:
Hopping promotes delocalization of particles.
Interaction causes level splitting and nonlinear energy structure.
Energy levels grouped by fixed N, with degeneracy and structure reflecting quantum
correlations.
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Open Quantum System – Particle Decay Dynamics

System Setup:
Bose-Hubbard dimer with 2 particles.
Tunneling strength v = 0.3.
Interaction c = 0.6.
Decay rate γ = 0.02 from site 2.

Model:
Lindblad Master Equation governs evolution:

ρ̇ = −i [Ĥ, ρ]− γ

2
(â†2â2ρ+ ρâ†2â2 − 2â2ρâ

†
2)

Includes coherent evolution and dissipative decay.

Key Insights:
Particles oscillate between wells due to tunneling.
Overall particle number decreases over time due to
decay.
Interaction causes deviation from simple Rabi
oscillations.

Red Dashed Line: ⟨n2(t)⟩/N
(particles in decaying site).
Blue Line: (⟨n1(t)⟩+ ⟨n2(t)⟩)/N
(total particle number).
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Thank you!

Questions?
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